viernes, 27 de agosto de 2010

SUCECION ARITMETICA
es una serie de números tales que la diferencia de dos términos sucesivos cualesquiera de la secuencia es una constante , cantidad llamada diferencia de la progresión o simplemente diferencia o incluso "distancia".
Por ejemplo, la sucesión 3, 5, 7, 9, 11,... es una progresión aritmética de constante (o diferencia común) 2.El término general de una progresión aritmética es aquel en el que se obtiene cualquier término sumándole la diferencia al término anterior. El término de una progresión aritmética es la expresión que nos da cualquiera de sus términos, conocidos alguno de ellos y la diferencia de la progresión.
Fórmula del término general de una progresion aritmetica: (d=diferencia)
Si el término inicial de una progresión aritmética es y la diferencia común es , entonces el término -ésimo de la sucesión viene dada por
, n = 0, 1, 2,... si el término inicial se toma como el cero.
n = 1, 2, 3,... si el término inicial se toma como el primero.
La primera opción ofrece una fórmula más sencilla, pero emplea una terminología más confusa, ya que no es común en el lenguaje el uso de "cero" como ordinal.

EJEMPLOS:


EJEMPLO A:

Notemos la sucesión: 8, 11, 14, 17, 20, 23, 26,…
La diferencia entre cualquier término y el anterior es 3, de modo que el término general sería 3n + b.
Para encontrar el valor de b podemos utilizar el primer término, en donde n = 1.
De esta forma, 3(1) + b = 8, y por lo tanto b = 5.
Por lo tanto, el término general de la sucesión es: 3n + 5.
Si queremos encontrar el término 25 de la sucesión, sustituimos 25 en la anterior fórmula:
3(25) + 5 = 80. De modo que el término 25 de la sucesión tiene el valor de 80.
Si queremos encontrar la suma de los primeros 12 términos de esta sucesión, utilizamos la fórmula (1) arriba, con a = 3, b = 5 y n = 12:


EJEMPLO B:


Notemos la sucesión: –13, –19, –25, –31, –43, –49, –55,…
La diferencia entre cada término y el anterior es -6, de modo que el término general sería –6n + b.
Para encontrar el valor de b podemos utilizar el primer término, en donde n = 1.
De esta forma, –6(1) + b = –13, y por lo tanto b = –7.
Por lo tanto, el término general de la sucesión es: –6n – 7.
Si queremos encontrar el término 16 de la sucesión, sustituimos 16 en la anterior fórmula:
–6(16) – 7 = –103. De modo que el término 16 de la sucesión tiene el valor de –103.
Si queremos encontrar la suma de los primeros 30 términos de esta sucesión, utilizamos la fórmula (1) arriba, con a = –6, b = –7 y n = 30:

No hay comentarios:

Publicar un comentario